
The recursion method of a linear operator inversion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 1

(http://iopscience.iop.org/0305-4470/9/1/004)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


l w ~ :  Math. Gen., Vol. 9, NO. 1,1976. Printed in Great Britain. @ 1976 

recursion method of a linear operator inversion 
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slovakia 
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Abstract. A method of inverting a linear operator in a recursively defined basis is 
developed. The questions of completeness, orthogonality, convergence and numerical 
stability are discussed. The numerical example of applicability of the method is taken from 
the Brueckner theory. 

Invarious fields of the quantum theory, we have to investigate the properties of a 
resolvent operator R ( E )  = ( E  - El)-' corresponding to a linear operator H in a vector 
space Vand depending on a complex parameter E not equal to an eigenvalue of H. In 
ahan investigation, various methods are used. Haydock (1974) derives for any vector 
1,)~ V the expansion of the vector 

inthe form 

k = l  

where we have slightly changed Haydock's original notation (for details see 0 2). The 
expansion (2) can be considered to be a generalization of the usual power series 
enpansion 

because01 can be obtained as a special case of (2) (Haydock 1974). The vectors Ixk)  are 
NRively defined by the action of the operator H, 

bn Ixn+1) = ~ I x n )  - an I x n > -  cn IXn-l), c1=0 (4) 
and it is therefore unnecessary to know an inner product in V. The sequences of 
Parameters 

Qn be chosen arbitrarily, thus providing a wide flexibility of the definition of the 
enpansion basis Ix,). 

, 
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The purpose of the present paper is twofold. Firstly, we derive the matrix elements 
of the resolvent operator R ( E )  in the Haydock basis (4) (9  2) and generalize this 
formalism ( $ 5  3 and 4). Secondly, we illustrate the practical value of this formalism by a 
numerical example taken from the Brueckner theory Of atomic nuclei (09 5 and 6). 

2. Action of the resolvent operator and its matrix elements 

In the method of Haydock, the coefficients in the expansion (2) are expressed in the 
product form 

d‘,”= fi ai (E) ,  n = 1 , 2 , .  . . 
i = l  

where a,(E) = b,-lf,(E) and the number bo = 1 is added for convenience. The func- 
tions fn(E)  satisfy the condition 

fn ( E )  = ( E ,  - bncn+ 1 f n +  I (E))-’> n = 1,2,  . . . (7)  

where E,, = E - a,, and, according to Haydock’s paper, may be calculated from some 
initial value given as a rather complicated limit. 

In this section, we shall suppose that the values f , (E)  are known and derive the 
analogue of the expansion (2) for the vector 

l y m ) =  R(E)lxm), m = 1 ,2 , .  . . . (8) 

Since the vectors lx,) are defined by equation (4), they form a complete set in some 
subspace vc V, invariant with respect to the action of the operator H. Therefore, all 
the matrix elements of R ( E )  can bk found from (x,IR(E)lx,j = ( x , I y m ) .  

Let us insert the definition (4) into equation (8) to get 

b m  ( ym+ 1) = -1Xm) + Em I Y m )  - c m  1 Ym- 11, m = 1 ,2 ,  . . . . 
The formula 

m 

IYm)= C d(km)lxk), m = 1 , 2 , .  . . 
k = l  

is then valid with the coefficients dim) given by the relation 

where 6; is a Kronecker delta. The direct consequence of (1 1) is the relation 

d \ ’ ” ’ = f l ( E )  fi cif i(E),  m = 2,3,  . . . 
i = 2  

which can be proved by means of mathematical induction. 
Let us further multiply the vector (8) from the left by the operator ( E  - H )  and use 

expansion (10). We get 

03 

I x m ) =  C d i m ) ( ~ - ~ ) I x k ) ?  m = 1 , 2 ,  . . . . (13) 
k = l  
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The term by term comparison Of both sides of (13) provides the relation 

(14) 
k (k)- 

a n i  e m d m  bm- ld!Xi I - cm+ I d',k: 1 

where 
There is symmetry between the pair of equations (1 I )  and (14). They differ by the 

exchange of b,++c,,+~ and lower * upper indices in the coefficients dim).  This 
symmetry also holds for the initial values ( 6 )  and (12) of the recurrence procedure and 
thus for any coefficient d '. Especially, the relations 

= 0 and k ,  m = 1, 2,  . . . . 

are valid. The following relation, derived from (1 1) and (14), holds for the remaining 
unknown values d :::I: 

d!Zi' = f,,t + 1 ( E )  ( 1 i- d!:: ' P m  ), m = 1 ,2 ,  . . . 
Pm = b m C m + l f m + i ( E ) .  

This relation implies the final form of the coefficients with identical indices 

Thus, in the expansion 

of the resolvent operator, we use the coefficients simply evaluated by means of 
equations (15), (16) and (18). 

3. Generalization of the expansion basis 

The orthonormality of the basis vectors lxf,), n = 1,2,. . . with respect to some inner 
product in v can be one of the possible restrictions accepted when choosing the 
coefficients ( 5 ) .  In the case of a general (non-Hermitian) operator H, the orthonormal- 
ity conditions 

(X1IX, ,+l)  = . . . = (XnjX,,+1) = 0, ( x n + i l x n + i ) =  1 (20) 
would need n + 1 free parameters in the definition of the vector Ix,+J,  in order to be 
met. 

If we accept the generalization 

i =  1 

of the definition (4), where 
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are arbitrary sequences again, then we are able to make the vectors n = 1,2,... 
mutually orthonormal by a special choice of the arbitrary parameters (22). It is e q t o  
show that in the case of a Hermitian operator H, this choice implies ct ’=  0, j=t 
3,. . . , n - 1, so that the definition (21) reduces to (4). In the construction of the 
corresponding sequences (5 )  given by Haydock (1974), the hermiticity of H is tad9 
supposed, because only in this case is the constructed basis actually orthonormal, 8 
Some loss of significance occurs in the computation, it is necessary to re-orthogon& 
the vector Ix,,) to the previously defined ones (Whitehead 1972), so that the generala 
definition (21) can be useful even in the case of the Hermitian H. For the generalized 
recurrence definition (21) of basis vectors we now derive the formalism analogauto 
that of 0 2. 

The expansion (10) remains valid in the same form, as well as the relation (6). & 
recurrence relation (7) for functions fn(E) becomes more general, namely 

Let us first suppose that functions fn(E) satisfying (23) are known. Then the 
formulae that are the analogues of the relations (1 1) and (14) read 

m-1 

m k  c cLm-i) dk ( i )  7 m, k =  I, 2 , .  . . (24 - b d ( m +  1 )  - 8,” = 
i = l  

W 

m, k = 1,2, . . . (251 

where dbk’=O. We obtain, further, the relation (15) in an identical form by meansof 
induction. The lack of symmetry in the present case leads to the more complicated 
relations 

bk+4F+r+l) - - 8 ,  0 

a m =  k Emdm ( k )  -bm-ld:Ll - 1 C:)+idjnkii, 
i = l  

k - 1  k cf+T-/) ( I t  dt Il bi-lfi(E), 
c ~ k ; + l ’ ~ ( & k + t - l ) -  

/ - I  / = I  i = i + 1  

r=0 ,1 ,2  ,..., k = 2 , 3 , 4  ,... (26) 

and 

dC:’)=fm+,(E)(Emd?)- 1 c?-’)dj’) bi -] f i (E) ) ,  m = 1,2 , .  . . (27) 
m- 1 m 

/ = I  i = i + l  

that correspond to the relations (16) and (17), respectively. 
The conclusion reads that the expansion (lo), in terms of the generalized bass 

vectors (211, has the coefficients defined by the formulae (15), (26) and (27), w n e d  
the sums and products are finite. 

As well as in 9 2, the most difficult task here is the calculation of fn(E). 
describe our method. It is based on the assumption that the inversion of the mam 
E - H  in the basis IX,) is, in principle, possible by inverting the matrix in trunajed 
finite-dimensional space, and then limiting the dimension N to infinity. The truncaooo 
of the basis will be simulated by putting bN = 0. The recurrence definition (21) then 
provides N independent vectors Ixl>, . . . , IxN), while the vectors I X N ~ ) ~  
i =  L 2 , .  . . can be put equal to zero as a consequence of a special tho" 
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ia -0, j , j =  1,2, .  . . . Any initial values fN+1, fN+2, .  . . , may be used in the 
M’ mnce definition (23) because the functions fi(E), i = 1,2,  . . . , N are uniquely 
dried by bpJ = 0 (ie fpJ(E) = l /eN etc). 

4 convergence problems 

iiae use the formalism of 88 2 or 3, we must first prove the convergence of the 
lIpansion (10) because the vector /y,> is considered to be a limit of the partial sums 

hn N+w. In the orthonormal basis, the problem of weak convergence does not 
&. For N>n, the relations ( x , / x k )  = 8 ;  imply. that ( x n l y m )  = d:” is exactly valid. 
Whenthe basis is not orthonormal, the discussion of the convergence, however simple it 
ay be, requires the explicit knowledge of the scalar products of basis vectors and will 
wtbe treated here-we suppose the validity of the orthonormality relations (20). 
The weak convergence can also be discussed in the basis I/3> # Ix), where we can 

Rite 

For bounded values ( @ j ( X k ) ,  it‘ is sufficient to prove the convergence of the series 

: ld(k”l. (30) 
k = l  

Theusual convergence criteria for a series of positive numbers (Korn and Korn 1968) 
Wbeused because the ratio /d(km,:I/ld(k”)l is equal to I a k + l ( E ) I  according to (15). Thus, 
tbe condition 

(31) Iim sup [n(la,+l(E)j - 1) + 11 In n < - 1 
n-m 

&sufficient for the convergence of (30). 
Norm of the vectors 1 ~ ~ ) ~  is given by the sum 

N N 

k . l = l  k = l  
N ( Y ~ ( ) ” ) N  = 1 ( X k I X i ) d ( k m ) d j m ) =  (d(km))’ 

and the Same criteria can be applied. Since the relation 

‘Mhvalidfor the corresponding ratio, the convergence in the norm is a consequence 
o‘theQvergence of the series (30). The condition sufficient for divergence of Iym> in 

nom is 

andimplies also the divergence of (30). 
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The last problem isthe convergence of thef,(E) values when the Cutoff parameterN 
grows to infinity. In fatt, we need to prove that the sequence aN-k with k increasingaod 
N >> 1 gives the value a, for no = N - ko independently of the value N >> no. The method 
of proving depends on the parameters (22) used. We give here an outline of the proof 
for the cases characterized by the existence of the limits 

because the example in the next section belongs to this class. 
Firstly, we simplify the situation by putting c ( ~ ~ + ' )  = ~ ( b + ' )  = . . . = 0 for some ioM 

defer the limit io+ 00 as the last step. Secondly, we consider here io = 1 only-& 
discussion of io> 1 cases being entirely analogous. Thirdly, we shall consider only& 
stability of the values a, for no = N -  ko >> 1 since the stability of the remaining valuer 
a,, for n ,  < no may be tested numerically. 

Without loss of generality (a  + -a transformation if needed), we may choose E > O  

in (34) and using the basic definition (23) (in our io = 1 case it is equivalent to (7)) we 
have 

ano =F(a,,,+i)(l +Ok(no))>> "-roo lim g(n)  = 0, 

F(a )  := ( E  - ca)-'. (351 

The stability of a, means 

so that a, is given by solving the equations (35) and (36). The existence of this solution 
implies that 

E' 2 4c. (3'1) 

We define t+b by the relations sinh'$ = e2-4c, sgn $ = sgn c and get two roots 

a, = aOR = 2(e - R sinh $)-I (381 

where R = +1 or R = -1. It is a matter of elementary algebra to show that the choiceof 
R which is consistent with the stability condition is given by the relation R = -Sgnc.lf 
we avoid the singularity of F(a)  by simply putting F ( E / c )  = 00, F(w) = 0, then it iseasy 
to demonstrate that the stability condition (36) is satisfied for any initial value f f ~ f Q 5  

where S = +sgn c. For 0 Sd,F(a,) = &(a,) < 1 with a, lying in the vicinity of eo, th! 
sequence ( Y N - k ,  k = 1,2, . . . monotonically decreases (if ~ ( a , )  < a,) or increases (i 
F(a,) > a,) to a0, while for -1 < d,F(a,) < 0 the sequence (aNTk - a0) changes signand 
approaches zero in absolute value. 

Since the stable root does not depend on n > no >> 1, we can conclude that for led'' 
the convergence of the series (30) and of the expansion (10) is guaranteed. The result 
laol>l implies divergence of (10) and (30) and we have for ~ < 2 ,  an additiond 
(convergence) restriction on the parameter c, 

C G E - 1 .  (391 
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5, An in nuclear theory 

Binding energies of atomic nuclei are calculated in the Brueckner theory by means of 
&reaction matrix G. The method of the calculation of G in finite nuclei was suggested 
by Sauer (1970), using the reference reaction matrix G, as a first step. While the 

of computation of Gr are standard (cf Baranger 1969), the approximate 
hduion of the Pauli principle ‘is performed by means of the operator equation 

(40) (1 - G,A)G = Gr. 

Quer solves that equation in a truncated oscillator basis 

&ere k is a relative impulse of two nucleons, A is the parameter in a corresponding 
harmonic potential and Lf;”(x) are Laguerre polynomials (eg Gradshteyn and Ryzhik 
!971). Sauer uses the operator A in the form 

where o is the available energy (negative). +eN3 is a constant approximating to the 
centre-of-mass energy of the two nucleons, K,,, is the relative kinetic energy operator 
and Q, the approximate Pauli projector, is a diagonal matrix with elements 

Sauer shows numerically that the calculation of A(Q) by means of the truncated 
matrix inversion converges quite rapidly with increasing cutoff. Nevertheless, the 
amount of work needed for numerically inverting matrices grows rapidly with their 
dimension and therefore the present method seems to be more adequate. Let us now 
demonstrate how it works. 

(4 0 = QxZ(n, 1). 

If the matrix Q is non-singular (Q = I is a special case), we put 

nen we get Ix,+J = Rn+no,i(k) according to definition (6). The formalism of § 2 
Provides the result 

(m + no, llA(Q)ln + no, 1) = -Qx3(m +no, I)d%”QNdn + % , I ) .  (45) 

I t a n  happen that QN3(no, I )  = 0-eg, in 4He we have Qoo(O, 0) = 0. Then the space 
vis One dimensional and the next oscillator function should be taken as the initial 
vector 1x1). In general, the first non-zero element QN3(no, I )  determines the value of the 
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parameter no which must be used in the case of the singular matrix Q in order to get& 
non-trivial space For example, in 4He we have no = 1 and the formula 

(4) Qm(n, 1) = 1 - 1/2 Zn+l-1 7 2n+l>O 

which we derive by employing the Trlifaj (1972) expression for Moshinsky coeffi”eah 
It is seen that Q # I cases may sometimes be calculated on an elementary level. 

Formal proof of the convergence of the series (10) or (30) is needed in ourm, 
because the value a. = -1 lies, for any matrix Q, on the boundary of the convergena 
region. The proof is quite lengthy and will not be given here in detail. We describeo$ 
the method of proof. 

Firstly, we neglect the exponential contribution of the QN3(n, l )  - 1 values (cf(46)) 
and get, in the Q = I approximation, the relation (7) in the form 

1 1/2 

1 1/2 . (471 
[(n - N n  + 1 -s)l a, = - 

A (E  + ;eN,) + 2n + 1 -; + [ n (n + 1 + 2)] cy,+l 

Secondly, we put a, = -1 +A, and get 

An/( 1 -An) = Bn + (1 + C n ) A n + I  (4) 
where 

A ( E  +$eN3) + (4np(l+$)’+ O(n-’) 
, c, = n-’fO(n-*). n[l +O(n-’)] B, = 

Thirdly, we show that the correct value A, is bounded by the values A‘,” and Ar’tbat 
are calculated by means of (48) from the initial values AN = 0 and AN = 1, respectively. 
The higher the cutoff N is, the closer the values A ‘,” and A f) approach the correct value 
A,, so that this phenomenon can be used also in practical calculations for the error 
determination. 

The last step of the proof uses the criterion (31) of the convergence of (30) in the 
form nA, > 1. A11 the values from the interval (A‘,), A:’”) fulfil this condition afterab 
iterations of (48), where the number k = N - n  of these iterations depends on the 
magnitude of the value A(E ++eN3) 2 0. 

Thus, the proof of the convergence of (30) is completed. It implies the convergena 
of the expansion (10) in the norm. Since we are able to derive the formula 

R,dk) = (-l)n[2a-’(A/n)”2]1~2k-1 ~in[2k(nA)’/~-$l~][l +O(n-’/’)], (491 

we can conclude that the expansion of (kly,) also converges. 

6. Numerical test 

The rate of convergence of (mlA(Q)ln) with respect to the cutoff N +  a was testedforo 
given by (46), Q = I, 1 = 0, 1, $ess = 0, A = 1,2  and for E varying. A few results are 
presented in table 1. Using the initial values aN = 0 or aN = -1 and increasingN,Weget 
the absolute values of the calculated matrix elements increasing or decreasing, respec- 
tively, to the correct value. In such a way, we can get the desired value and also theenor 
estimate. Better results can be obtained using aN = cyo(N), where the value ao(M 
solution of equation (47), where we put cy, = aO(Iv) = n = N. 
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Table I. The rate of convergence of a few matrix elements (ml(E - v-lln) = ( m l ~ l n ) .  The 
numbers of the correctly calculated significant digits are given for three different initializa- 
tions aN dependent on the cutoff N. 

E N ao(N) a~ 0 - 1  ao(N) 0 -1  a d N )  0 - 1  ao(N) 

50 8 -0.1122 10 
10 8 10 7 -0.0995 10 

6 -0.0860 10 9 9 7 9  
5 -0.0718 9 8 10 7 5 7  
4 -0.0566 7 6 7  5 4 5  
3 -0.0404 10 10 10 5 3 5  2 2 2  
2 -0.0229 9 7 9  2 1 2  0 0 0  
1 -0~0000 6 5 6  0 0 0  0 0 0  

1 100 -0.9001 10 10 10 10 
50 -0.8588 10 10 10 9 9 10 8 9 10 
20 -0.7775 6 6 7  4 5 6  4 4 5  
10 -0.6869 4 4 5  3 2 4  2 2 3  
5 -0.5615 2 3 3  2 1 2  1 1 1  

0.1 200 -0.9753 8 8 9  6 6 8  5 6 7  
50 -0.9453 4 3 5  3 2 4  3 2 4  
10 -0.8455 2 1 3  0 0 1  0 0 1  

0 8000 -0.99986 2 2 2 
15 -0.9306 1 1 1  0 1 0  0 0 1  

An example of an inadequate use, though good test, of the method is a very slowly 
convergent calculation for E = 0. The exact result can be obtained by analytic 
integration-we reach 1% accuracy at N = 8000. This result can hardly be obtained by 
matrix inversion, not to speak of the error estimation possibility. 

ne test was performed on the calculator Compucorp 324 G with 2 X 80 elementary 
instructions in the storage. 

our work is inspired by Haydock (1974). He gives the expansion of the result of the 
resolvent operator R ( E )  = ( E  -H)-' acting on an arbitrary initial vector /xl> in terms of 
herecursively defined basis vectors Ixn), n = 1, 2, . . . . We derive analogous expansions 
O:the vectors Jy,) = R(E)~x,) ,  m = 2, 3, . , . , in the same basis. The expansion coeffi- 
aenkare calculated by means of elementary formulae so that the action of the resolvent 
'perator in the whole space can be easily investigated. 

ne calculation of the expansion coefficients is based on a recursively evaluated 
quene of numbers un. The initialization of this sequence represents a serious 
p?~aI difficulty in Haydock's original paper. We show that this difficulty can be 
SU"piyovercome by the basis truncation. The initial value uN = 0 can then be taken for 
a 'age N. 
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The recursive definition of the vectors Ix,,) is very flexible and does not &pendos 
any inner product. It contains three sequences of arbitrary parameters that canbe 
chosen to simplify the structure of the vectors Ix,,). If we succeed in relating Ix,,) tosou 
simple functions, the problem of evaluating the matrix elements of R(E)  bemm 
trivial. 

It can happen that some additional restrictions are necessary for simplifying 
vectors Ix,,). We introduce further corresponding parameters in the definition of L 
basis and derive the generalized formulae. The new definition enables us, for exam& 
to orthonormalize the vectors Ix,,) for any linear operator H. 

The convergence of expansions in the orthonormal basis becomes a very sin& 
problem and is closely connected with the evaluation of a,,. Both the problems@ 
discussed in some detail. Some convergence and numerical stability criteria 
explicitly given for a class of operators H which is characterized by the possibilivd 
choosing the arbitrary parameter sequences convergent (cf (34)). 

A numerical test confirms the general arguments. The main advantage of using& 
method lies in the possibility of checking the precision in a simple way. We use two 
types of the a,, initialization and the two corresponding approximations approach I& 
final result from both sides. In general, the method enables us to influence the precision 
by increasing the cutoff N of the basis. It is important that only a one-dimensionalmy 
a, is calculated for a given N. At the same time, only a fixed number of matrixelementr 
of R ( E )  is required in most cases so that much work is saved in comparison to the matii 
inversion technique. 
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